Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone

نویسندگان

  • E. Chaussard
  • R. Bürgmann
  • H. Fattahi
  • C. W. Johnson
  • R. Nadeau
  • T. Taira
  • I. Johanson
چکیده

Interseismic strain accumulation and fault creep is usually estimated from GPS and alignment arrays data, which provide precise but spatially sparse measurements. Here we use interferometric synthetic aperture radar to resolve the interseismic deformation associated with the Hayward and Calaveras Faults (HF and CF) in the East San Francisco Bay Area. The large 1992–2011 SAR data set permits evaluation of shortand long-wavelength deformation larger than 2mm/yr without alignment of the velocity field to a GPS-based model. Our time series approach in which the interferogram selection is based on the spatial coherence enables deformation mapping in vegetated areas and leads to refined estimates of along-fault surface creep rates. Creep rates vary from 0± 2mm/yr on the northern CF to 14 ± 2mm/yr on the central CF south of the HF surface junction. We estimate the long-term slip rates by inverting the long-wavelength deformation and the distribution of shallow slip due to creep by inverting the remaining velocity field. This distribution of slip reveals the locations of locked and slowly creeping patches with potential for aM6.8 ± 0.3 on the HF near San Leandro, a M6.6 ± 0.2 on the northern CF near Dublin, a M6.5 ± 0.1 on the HF south of Fremont, and a M6.2 ± 0.2 on the central CF near Morgan Hill. With cascading multisegment ruptures the HF rupturing from Berkeley to the CF junction could produce a M6.9 ± 0.1, the northern CF a M6.6 ± 0.1, the central CF aM6.9 ± 0.2 from the junction to Gilroy, and a joint rupture of the HF and central CF could produce a M7.1 ± 0.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault structure and mechanics of the Hayward Fault, California, from doubledifference earthquake locations

[1] The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relativ...

متن کامل

Towards inferring earthquake patterns from geodetic observations of interseismic coupling

Ultimately, seismotectonic studies seek to provide ways of assessing the timing, magnitude and spatial extent of future earthquakes. Ample observations document the spatial variability in interseismic coupling, defined as a degree of locking of a fault during the period of stress build-up between seismic events: fully or nearly locked fault patches are often surrounded by aseismically creeping ...

متن کامل

High-resolution image of Calaveras Fault seismicity

[1] By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents 92% of all seismicity since 1984 and includes the rupture zone of the ...

متن کامل

Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system

[1] We develop a two-dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike-slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike-slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shea...

متن کامل

Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes

[1] We systematically investigate the velocity contrast along the Calaveras fault that ruptured during the 1984 Morgan Hill earthquake using fault zone head waves (FZHW) that refract along the fault interface. We stack waveforms in 353 sets of repeating clusters, and align the peaks or troughs of the direct P waves assuming rightlateral strike-slip focal mechanisms. The obtained velocity contra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016